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1 Introduction

In this work we consider the systematic anisotropic processing of large arrays of medical

image data acquired on a domain of arbitrary dimension. The goal is to extract potentially

significant low curvature structures in the data for purposes of preliminary data modeling and

visualization, as well as to guide subsequent analysis for more detailed structures of interest.

We develop a general framework for systematic anisotropic processing of n-dimensional (n-D)

image data that builds on recent approaches and results of scale-space image processing. The

anisotropic processing preserves structures independently along each data domain coordinate

axis direction, as well as along the diagonal directions of the 2-D planes spanned by the co-

ordinate axes. In addition, the processing provides information sufficient to characterize

the first and second order differential properties of the data in any direction. This frame-

work is applied to the problem of efficiently extracting potentially significant low curvature

structures in time sequences of volumetric (i.e., 4-D) medical image data.

Generally, the information of interest in medical image data is contained in the spatial

and temporal structure of regions whose image intensities differ substantially from that of

their surrounds. Because at the outset we may not know the spatial and temporal extents

of the structures of interest, we assume that the image data are of a sufficient resolution in

all dimensions so that the cross sections of the structures can be extracted and described

effectively. We assert that the effective extraction and description of the structures requires

anisotropic differential processing and analysis at multiple spatial and temporal scales.

Differential image intensity structures that often are of interest are significant transitions

(edges) in image intensity associated with boundaries of significant structures, as well as local

extrema (ridges and troughs) and inflections (ledges) in image intensity associated with the

medial axes of significant elongated structures. Examples of structures of interest in medical

imaging are the walls of the left ventricle of the heart and the layer of cortical gray matter

in the brain, shown in magnetic resonance (MR) images in Figure 1. These locally elongated

heart and brain structures can be characterized by the inner and outer surfaces bounding
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Figure 1: Magnetic resonance (MR) images of (a) the heart, and (b) the brain.

the structures, as well as by the surfaces spanned by the medial axes of 2-D cross sections

of the structures.

Candidate boundaries for structures of interest have been extracted by considering points

in medical image data where the image intensity is changing relatively rapidly. Points of

locally maximum (or near maximum, based on other constraints) estimated image gradient

vector magnitude have been used [1–5], as have zero-crossing locations obtained in response

to a second order differential operator such as the Laplacian or the second derivative in the

direction of the gradient [6–10]. In addition, the medial axes of elongated structures have

been extracted using first and second order differential operators [11–13,5, 14].

Typically, these operators are composed from Gaussian derivative kernels which smooth

the data isotropically prior to performing differentiation [15]. The Gaussian scale parameter

(standard deviation) σ is varied systematically to optimize the response of the operator with

respect to the size and detail of the structures of interest and the noise in the image data. As

the dimensionality n of the image data domain increases beyond two, however, the extraction

and description of significant edges, ridges, troughs, and ledges in image intensity can become
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more difficult for a number of reasons. One reason is that the topology of the structures,

which in general are (n− 1)-D manifolds, can become quite complicated. Another reason is

that when the data domain is sampled using rectilinear sampling with comparable numbers

of samples along each coordinate axis of the data domain, as is typically the case in medical

imaging, the amount of image data grows exponentially with n. Scale-space image analysis

methods embed the data in a domain having a dimensionality of at least n + 1, further

compounding the issues of topological and computational complexity.

We address the issues of topological and computational complexity by focusing attention

on significant structures that have low curvature relative to the scale at which the data are

being analyzed. We define a generalized anisotropic scale-space image for n-D data and assert

that 1-D scale-space methods can be used to subsample and analyze the anisotropic scale-

space image efficiently for low curvature structures. In addition, we replace the Gaussian

derivative kernels with kernels based on the uniform cubic B-spline basis function, which

approximates a Gaussian and has nice analytic and computational properties.

The anisotropic scale-space image for n-D data can be subsampled efficiently by process-

ing the data at multiple scales in multiple directions along 1-D linear profiles through the

data. For a set of parallel 1-D profiles passing through a low curvature structure, the image

intensity functions along the profiles will have similar shapes in the neighborhood of the

structure (Figure 2). Each profile can be processed separately with first and second deriva-

tive operators to extract the 1-D image intensity edge, ridge, trough, or ledge associated with

the low curvature structure. Thus, the problem of extracting the local differential structure

of n-D image data can be decomposed into independent 1-D problems that can be solved

efficiently using extensions to well established 1-D scale-space methods. The multidirectional

1-D scale space profile processing preserves structures independently in each direction.

In addition, novel multidimensional differential operators, which we term radial profile

operators, can be composed efficiently from multidirectional 1-D profile derivative operators.

Radial profile operators can be used to estimate the first and second derivative in any di-
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Figure 2: Parallel 1-D intensity profiles

through the cardiac MR image shown in

Figure 1a. The middle profile corresponds

to the row of pixels along the line drawn

through the image. The upper and lower

profiles correspond to the rows of pix-

els immediately above and below the line.

Prominent in each profile is an image in-

tensity trough associated with the septum.

Less prominent is a ledge associated with

the lateral wall of the left ventricle.

rection and to explore the n-D image data quickly for neighborhoods containing significant

structures.

Subsequent processing and analysis can then be performed to match structures across

parallel 1-D profiles to create global descriptions of piecewise low curvature structures. This

extraction and modeling of piecewise low curvature structures provides an important first

step toward efficiently analyzing the detailed differential structure of n-D image data.

2 The Anisotropic Scale-Space Image

Over the past fifteen years there has been much interest in scale-space signal processing

and analysis. In 1983, Witkin proposed the Gaussian scale-space representation of 1-D sig-

nals [16]. He defined the scale-space image of a 1-D signal f(x) to be the 2-D function

f̄(x, σ) = f(x) ∗ g(x, σ), (1)

where g(x, σ) is the Gaussian with standard deviation σ and “∗” denotes convolution with

respect to x. As the scale parameter σ increases, smaller-scale features of the signal diffuse
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Figure 3: Gaussian scale-space image cross sections (a) for Gaussian scale param-

eter values σ = 0.58, 1.15, 2.31, 4.62, and 9.24 pixels, and fingerprint (b) for

σ ∈ [0.58, 9.24] pixels, for the middle cardiac MR image intensity profile shown in

Figure 2. Solid lines overlaid on the profiles and shown in the fingerprint depict the

second Gaussian derivative zero-crossing locations.

into smoother larger-scale features (Figure 3a). The mth Gaussian derivative of the signal

f(x) is given by the relation

∂mf̄

∂xm
=

∂m(f ∗ g)

∂xm
= f ∗ ∂mg

∂xm
. (2)

A compact representation of the differential structure of the signal is the scale-space

fingerprint composed of the contours in the xσ plane defined implicitly by{
(x, σ)

∣∣ ∂2f̄

∂x2
= 0

}
. (3)

For a particular value of the scale parameter σ, the locations of the second Gaussian deriva-

tive zero-crossings correspond to the local extrema in the first derivative of the smoothed

signal (Figure 3b). Potentially significant transitions (edges) at that scale are then associated

with the second derivative zero-crossings at which the first Gaussian derivative magnitude

locally maximizes. The second derivative zero-crossings associated with local minima in the

first Gaussian derivative magnitude have been termed phantom edges [17, 18]. We refer to

these inflections as ledges.
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In the mid-1980’s, Witkin’s methods were generalized to multidimensional data by Koen-

derink [19] and by Yuille and Poggio [20]. They proposed convolving the data with separable,

isotropic, multidimensional Gaussians and showed that these filters facilitate tracking struc-

tures in the data from relatively large scales at which the structures can be more easily

extracted and identified, to relatively fine scales at which the details of the structures can

be better localized. Tracking across scales is facilitated because as the scale parameter σ

is increased, no new structures are created in the smoother data. Thus, all structures at a

particular scale can be associated with more detailed structures at a finer scale. For mul-

tidimensional data convolved with Laplacian of Gaussian operators, however, the resulting

spatial cross sections of zero-crossing structures can split and then merge again as the scale is

varied, to yield scale-space fingerprints composed of zero-crossing surfaces with complicated

topology [20,21].

For multidimensional data smoothing there is considerable flexibility with respect to the

direction of and the scale associated with each axis of the multidimensional Gaussian. Taking

advantage of this flexibility can aid in the extraction and description of structures composed

of elongated sub-structures having arbitrary orientation. Compared to isotropic smoothing,

one can better preserve the underlying local differential structure of multidimensional data

and obtain comparable noise reduction by locally doing less smoothing in the direction

normal to an elongated structure, while doing more smoothing in directions tangent to the

structure [22].

We assert that the early stages of scale-space analysis of medical image data can form

better estimates of the locations and orientations of possible structures of interest by having

available the results of systematic anisotropic processing. Therefore, as a general low level

input to the analysis we define the anisotropic scale-space image of the n-D data array f(x)

to be the (n2+3n
2

)-D function

f̄(x,Λ) = f(x) ∗ g(x,Λ), (4)

where g(x,Λ) is the n-D Gaussian with covariance matrix Λ. Thus, the anisotropic scale-

6



LBNL-42584

space image domain is parametrized using n data domain coordinates, n scale coordinates,

and (n2 − n)/2 coordinates that specify the orientation of the n-D Gaussian.

Lindeberg has also proposed the use of equation 4, which he terms the affine scale-space

representation, for shape-from-texture estimation, stereo matching, and flow estimation [23].

To analyze spatiotemporal data Lindeberg has also used velocity-adapted Gaussian kernels,

where both the size and mean location of an anisotropic spatial Gaussian (with fixed shape

and orientation) were allowed to vary together to facilitate the tracking of moving struc-

tures [24]. For complete velocity adaptation, the support of the Gaussian was extended

across the time domain and the mean temporal coordinate was coupled with the mean spa-

tial location.

Morita has also used anisotropic Gaussians for 2-D image analysis [25]. Morita system-

atically varied the shape and orientation of the Gaussian, as well as the size. Scale-space

analysis was performed using 5 shapes, 8 orientations, and 5 sizes, for a total of 200 filters.

We now consider the computational complexity of generalizing anisotropic processing

such as Morita’s to higher dimensional medical image data, and discuss the advantages of

performing multidirectional 1-D scale-space profile processing using kernels based on the

uniform cubic B-spline basis function.

3 Efficient Subsampling of the Anisotropic Scale-Space

Image Via Multidirectional 1-D Profile Processing

Using Uniform B-splines

Rectilinear sampling of the anisotropic scale-space image with l samples along each of the

n scale and (n2−n)/2 directional coordinates yields an array containing l(n
2+n)/2 times more

data than the original n-D data array. This is practical perhaps only for n = 2 and a

relatively small l, as was the case with the work presented by Morita [25]. For example,
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for l = 5 samples, the resulting scale-space image of a 100 × 100 data array contains only

1.25× 106 elements. For a 3-D data array with 1003 elements, however, this sampling yields

over 1010 elements. For a 4-D data array with 1004 elements, the scale-space image contains

nearly 1015 elements. That is, nearly 107 multidimensional filters are applied to the 4-D data

array. Using separable filters aligned with the data domain coordinate axes (to sample only

the four scale coordinates) dramatically reduces the number of filters to 625.

To reduce the amount of processing even further while increasing the directional sam-

pling, 1-D filters can be used to process the array along each data domain coordinate axis

direction, as well as along the diagonal directions of the 2-D planes spanned by the coordi-

nate axes. This yields a sampling of n2 directions and results in an anisotropic scale-space

image containing only ln2 times more data than the original data array. For l = 5 samples

and a 4-D data array with 1004 elements, the scale-space image contains 8 × 109 elements.

Thus, only 80 1-D filters (having 16 different orientations and 5 different sizes) are applied

to the 4-D data array.

Having reduced the amount of scale-space image data to be processed, we focus now on

the efficiency of the processing. As a computationally more efficient alternative to processing

using Gaussian derivative kernels, we and others have been investigating the use of kernels

based on the uniform B-spline basis function [26, 27]. The uniform B-spline has scaling

properties that allow an implementation of a sequence of filter kernels having geometrically

increasing standard deviation σ, using a fixed amount of computation at each scale. By

comparison, repeatedly filtering with the same (truncated) Gaussian results in only a sub-

linear increase in σ, for a fixed amount of computation.

It can be shown that the standard deviation of a uniform cubic B-spline can be doubled

by convolving with a discrete kernel having just five non-zero elements, independent of

the standard deviation of the spline. A Gaussian kernel truncated to k elements must be

convolved with itself three times, however, to double the standard deviation. To double the

standard deviation again, another twelve convolutions with the k-element Gaussian kernel are
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Figure 4: Uniform cubic B-spline scale-space image cross sections (a) for spline scale

parameter values a = 1, 2, 4, 8, and 16 pixels, and augmented fingerprint (b) for

a ∈ [1, 16] pixels, for the middle cardiac MR image intensity profile shown in Figure 2.

Solid lines overlaid on the profiles and shown in the fingerprint depict the second

spline derivative zero-crossing locations, which closely resemble the second Gaussian

derivative zero-crossing locations shown in Figure 3. Dashed lines depict the first

spline derivative zero-crossing locations. The range of the uniform cubic B-spline

standard deviation corresponds to that of the Gaussian used in Figure 3.

required, while only one additional convolution with a kernel having five non-zero elements

is needed when using the uniform cubic B-spline.

As a compact representation of the differential structure along a 1-D profile f(x), we intro-

duce the augmented spline scale-space fingerprint composed of the contours in the xa plane

defined implicitly by

{
(x, a)

∣∣ ∂2f̄

∂x2
= 0 or

∂ f̄

∂x
= 0

}
, (5)

where f̄(x, a) is obtained by convolving f(x) with a uniform B-spline whose support is propor-

tional to a. For a uniform cubic B-spline, the support is defined to be 4a and the resulting

standard deviation is σ = a
√

1/3.

It can be shown that the second spline derivative of an isolated edge or ledge is zero at or
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near the center of the edge or ledge for all a > 0. Similarly, the first spline derivative of an

isolated ridge or trough is zero at or near the center of the ridge or trough for all a > 0. Thus,

the zero-crossing contours of the augmented spline scale-space fingerprint depict the locations

of a variety of potentially significant structures, as a function of the scale parameter a.

This representation extends Witkin’s scale-space fingerprint (equation 3), which contains

only second Gaussian derivative zero-crossings associated with edges and ledges and which

typically has been analyzed only for significant edges [17, 18]. Figure 4 shows the uniform

cubic B-spline scale-space image and augmented fingerprint corresponding to the Gaussian

scale-space image and fingerprint shown in Figure 3.

Ledge medial axis locations can be distinguished easily from edge locations in the aug-

mented fingerprint, without having to calculate third derivatives as in [17, 18]. At a given

scale, ledge medial axis locations are found within sequences of second derivative zero-

crossings that are not separated by a first derivative zero-crossing. In particular, a second

derivative zero-crossing that is adjacent to a first derivative zero-crossing corresponds to an

edge location. Until another first derivative zero-crossing is encountered, subsequent second

derivative zero-crossings correspond alternately to ledge medial axis locations and edge loca-

tions. That is, the second consecutive second derivative zero-crossing corresponds to a ledge

medial axis location, the third consecutive second derivative zero-crossing corresponds to an

edge location, and so on.

Figure 5 shows zero-crossing locations obtained by convolving linear profiles through the

cardiac MR image in Figure 1a with 1-D first and second derivative operators based on the

uniform cubic B-spline basis function.

4 Radial Profile Operators

Multidirectional 1-D scale-space profile processing of n-D data has the following noteworthy

property. This processing provides an initial sampling of the anisotropic scale-space image
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(a) vertical (b) horizontal

(c) upper left to lower right (d) lower left to upper right

Figure 5: Edges, ridges, troughs, and ledges obtained by convolving (a) vertical,

(b) horizontal, and (c, d) diagonal linear profiles through the cardiac MR image

in Figure 1a with 1-D first and second spline derivative operators having supports

of 17 pixels. Edges and ledges (second derivative zero-crossings) are shown in red.

Ridges and troughs (first derivative zero-crossings) are shown in green. The solid

contours were obtained by convolving the 4-D MR image array containing Figure 1a

with a 17× 17× 17× 9 radial profile Laplacian operator as described in Section 4.
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which contains information sufficient to characterize fully the first and second order differ-

ential properties (i.e., the gradient vector and the Hessian matrix) of n-D data at multiple

anisotropic scales. Thus, from multidirectional 1-D profile derivative operators one can com-

pose arbitrary multidimensional differential operators, with which one can more completely

sample the anisotropic scale-space image and its partial derivatives as need be, in subse-

quent stages of analysis. In addition, second order multidimensional operators such as the

n-D Laplacian or the second derivative in the direction of the n-D gradient can be com-

posed and used to explore the data array quickly for neighborhoods containing significant

structures. The gradient vector and the Hessian matrix can be estimated as follows.

The n-D data array is denoted by f(x), where x = [x1 · · · xn]T is the position vector

for the domain of the data and “[ ]T” denotes the matrix transpose. The 1-D linear profile

passing through the point x0 in the direction v0 is denoted by

fx0,v0(s) = f(x0 + sv0), (6)

where v = [v1 · · · vn]T is a unit vector and s is an arc length parameter.

The relationships between the first and second derivatives along the 1-D profile fx,v(s)

and the first and second order partial derivatives of the n-D data f(x) are

dfx,v

ds
= v · ∇f =

[
v1 · · · vn

]



∂ f
∂x1

...

∂ f
∂xn


 = vTg (7)

and

d2fx,v

ds2
= v · ∇[v · ∇f] =

[
v1 · · · vn

]



∂2f
∂x1

2 · · · ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

· · · ∂2f
∂xn

2







v1

...

vn


 = vTHv, (8)

where g(x) is the gradient vector and the matrix H(x) of second order partial derivatives is

the Hessian matrix. For convenience one can write vTHv as the inner product wTh of the
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(n2+n
2

)-element vectors

w =

[
v2

1 2v1v2 · · · 2v1vn v2
2 2v2v3 · · · 2v2vn · · · v2

n−1 2vn−1vn v2
n

]T

(9)

and

h(x) =

[
∂2f

∂x1
2

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2

2
∂2f

∂x2∂x3
· · · ∂2f

∂x2∂xn
· · · ∂2f

∂xn−1
2

∂2f
∂xn−1∂xn

∂2f
∂xn

2

]T

. (10)

Given first and second derivative estimates from 1-D profile processing along each data

domain coordinate axis direction and along the diagonal directions of the 2-D planes spanned

by the coordinate axes (for a total of n2 directions), one can form least squares estimates

of the gradient vector g(x) and the vector h(x) of Hessian matrix elements as follows. The

n2 direction vectors for the 1-D profiles and the corresponding w vectors are stored in the

matrices

V =




vT
1

...

vT
n2


 W =




wT
1

...

wT
n2


 . (11)

The first and second derivative estimates along the 1-D profiles are stored in the vectors

f (1)(x) =




dfx,v1

ds

...

dfx,v
n2

ds


 f (2)(x) =




d2fx,v1

ds2

...

d2fx,v
n2

ds2


 . (12)

The vectors ĝ(x) and ĥ(x) are desired, which minimize the weighted sums of squared errors

χ2
1 =

[
f (1) −Vĝ

]T
Ψ1

[
f (1) −Vĝ

]
(13)

and

χ2
2 =

[
f (2) −Wĥ

]T

Ψ2

[
f (2) −Wĥ

]
, (14)

where Ψ1(x) and Ψ2(x) are symmetric weighting matrices. Typically, Ψ1(x) and Ψ2(x) are

either identity matrices for unweighted least squares estimates, or the respective inverses
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of the covariance matrices for f (1)(x) and f (2)(x) for weighted least squares estimates. The

resulting least squares estimates for the gradient vector g(x) and the vector h(x) of Hessian

matrix elements are

ĝ(x) =
[
VTΨ1V

]−1
VTΨ1f

(1) (15)

and

ĥ(x) =
[
WTΨ2W

]−1
WTΨ2f

(2). (16)

Thus, multidirectional 1-D scale-space profile processing provides information sufficient

to estimate the first and second order partial derivatives of n-D data at multiple anisotropic

scales. The resulting multidimensional operators are just linear combinations of n2 1-D profile

derivative operators, which share a central point and project radially along the data domain

coordinate axes and along the diagonals of the 2-D planes spanned by the coordinate axes.

We term this new class of multidimensional operators radial profile operators.

Using the gradient vector and Hessian matrix element estimates obtained with the

radial profile operators one can compose multidimensional operators such as the Lapla-

cian,
∑n

p=1
∂2f

∂xp
2 , or the second derivative in the direction of the gradient, weighted by the

gradient magnitude squared,
∑n

p=1

∑n
q=1

∂ f
∂xp

∂ f
∂xq

∂2f
∂xp∂xq

. These operators can be used to ex-

plore the n-D data array quickly for neighborhoods containing significant structures.

Figures 6a and 6b show cross sections of zero-crossing surfaces obtained by convolving

the 4-D cardiac MR image array containing Figure 1a with 4-D radial profile Laplacian and

separable Laplacian operators based on the uniform cubic B-spline basis function discussed

in Section 3. The 4-D MR image array is from a cine breath-held study and is composed

of 25 contiguous 5 mm-thick short axis images at 8 phases of the cardiac cycle. Each short

axis image has 128× 128 pixels with pixel size 1.25× 1.25 mm. The data array was padded

with cardiac phases 5–8 preceding the first phase and phases 1–4 following the eighth phase.

A 3 × 3 × 3 spatial median operator was applied to the resulting 128× 128 × 25 × 16 data

array to reduce noise.
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(a) 9× 9× 9× 5 (b) 17× 17× 17× 9

1 2 3 4

5 6 7 8
(c) 17× 17× 17× 9

Figure 6: Zero-crossing contours and surfaces obtained by convolving the 4-D car-

diac MR image array containing Figure 1a with Laplacian operators having various

supports. The solid contours in (a, b) were obtained using radial profile Laplacians.

The dashed contours in (a, b) were obtained using separable Laplacians. The left

ventricular wireframe surfaces in (c) were extracted for eight cardiac phases, using a

radial profile Laplacian. The view in (c) is from in front of the anterior wall.
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Profiles aligned with the three spatial coordinate axes and with the six diagonals of

the spatial planes were processed with 1-D second derivative operators having supports 5, 9,

and 17. Profiles aligned with the time axis and with the six diagonals of the planes containing

the time axis were processed with 1-D second derivative operators having supports 5 and 9.

The total time to process the 6.5 million-element MR image array with the 41 filters was

about 24 min, using a 194 MHz MIPS R10000-based Silicon Graphics UNIX workstation.

For a given operator support, the radial profile Laplacian and separable Laplacian oper-

ators extract comparable edge and ledge structures. However, the radial profile Laplacian

operator appears to preserve the details of the structures better as the support increases.

Figure 6c shows the zero-crossing surfaces that were extracted from a 64 × 64 × 15 × 8

neighborhood containing the left ventricle, using the radial profile Laplacian.

In the neighborhood of the intersection of a 1-D profile with the radial profile Laplacian

zero-crossing surface associated with a structure of interest, one can analyze the augmented

scale-space fingerprint of the 1-D profile to localize the boundary or the medial axis of the

structure more accurately. The first and second derivative zero-crossing locations in the

fingerprint of the 1-D profile are not biased by image intensity changes in directions perpen-

dicular to the profile. Such bias can occur for zero-crossings obtained from multidimensional

processing [28].

5 Summary

Isotropic Gaussian derivative operators have been used by a number of researchers to ex-

tract a variety of structures in medical image data. One can better preserve the details of

structures, however, through the use of anisotropic processing. Anisotropic processing can

be computationally intensive, particularly when systematically processing 3-D or 4-D data

in multiple directions at multiple scales throughout the data domain.

We have defined a generalized anisotropic scale-space image for n-D data and have ad-
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dressed the issue of computational complexity by focusing attention on significant low cur-

vature structures. The anisotropic scale-space image can be subsampled systematically and

efficiently for low curvature structures by using 1-D derivative operators based on the uniform

cubic B-spline to process linear profiles through the n-D data. By augmenting the second

derivative zero-crossings in the scale-space fingerprint of a 1-D profile with the first deriva-

tive zero-crossings, one obtains complementary information about image intensity ridge and

trough locations and can distinguish easily between ledge medial axis locations and edge

locations.

Processing 1-D profiles along each data domain coordinate axis direction, as well as along

the diagonal directions of the 2-D planes spanned by the coordinate axes, yields information

sufficient to characterize the first and second order differential properties of the n-D image

data. Estimates of the gradient vector and Hessian matrix elements can be obtained as linear

combinations of the first and second derivatives along the 1-D profiles. Because the resulting

multidimensional partial derivative operators share a central point and project radially in

the directions of the 1-D processing, we term these operators radial profile operators.

Using the gradient vector and Hessian matrix element estimates obtained with radial

profile operators, the n-D Laplacian or the second derivative in the direction of the n-D gra-

dient can be calculated. Zero-crossing surfaces extracted by these second order operators

can be used as preliminary models for the boundaries of possible structures of interest, to

guide subsequent processing and analysis.
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